Challenges and opportunities in quantum machine learning

by

in

[ad_1]

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • Brookes, J. C. Quantum effects in biology: golden rule in enzymes, olfaction, photosynthesis and magnetodetection. Proc. R. Soc. A 473, 20160822 (2017).

    Article 

    Google Scholar 

  • Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 97–117 (1985).

    MathSciNet 
    MATH 

    Google Scholar 

  • Wiebe, N., Kapoor, A. & Svore, K. M. Quantum deep learning. Preprint at https://arxiv.org/abs/1412.3489 (2014).

  • Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015).

    MATH 
    Article 

    Google Scholar 

  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article 

    Google Scholar 

  • Arute, F. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 

    Google Scholar 

  • Cincio, L., Subaşí, Y., Sornborger, A. T. & Coles, P. J. Learning the quantum algorithm for state overlap. New J. Phys. 20, 113022 (2018).

    Article 

    Google Scholar 

  • Tranter, A. D. Multiparameter optimisation of a magneto-optical trap using deep learning. Nat. Commun. 9, 4360 (2018).

    Article 

    Google Scholar 

  • Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    Google Scholar 

  • Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019).

    Article 

    Google Scholar 

  • Tang, E. A quantum-inspired classical algorithm for recommendation systems. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 217–228 (Association for Computing Machinery, 2019).

  • Huang, H.-Y. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Article 

    Google Scholar 

  • Banchi, L., Pereira, J. & Pirandola, S. Generalization in quantum machine learning: a quantum information standpoint. PRX Quantum 2, 040321 (2021).

    Article 

    Google Scholar 

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article 

    Google Scholar 

  • Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • D’Alessandro, D. Introduction to Quantum Control and Dynamics (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, Taylor & Francis, 2007).

  • Verdon-Akzam, G. Quantum analog–digital interconversion for encoding and decoding quantum signals. US patent application 17,063,595 (2020).

  • Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

    Article 

    Google Scholar 

  • Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article 

    Google Scholar 

  • Lloyd, S., Schuld, M., Ijaz, A., Izaac, J. & Killoran, N. Quantum embeddings for machine learning. Preprint at https://arxiv.org/abs/2001.03622 (2020).

  • Schuld, M., Sweke, R. & Meyer, J. J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 103, 032430 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Roffe, J. Quantum error correction: an introductory guide. Contemp. Phys. 60, 226–245 (2019).

    Article 

    Google Scholar 

  • Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    Article 

    Google Scholar 

  • Havlíček, V. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article 

    Google Scholar 

  • Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013–1017 (2021).

  • Schuld, M. Supervised quantum machine learning models are kernel methods. Preprint at https://arxiv.org/abs/2101.11020 (2021).

  • Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum computer. Preprint at https://arxiv.org/abs/1712.05771 (2017).

  • Kerenidis, I., Landman, J., Luongo, A. & Prakash, A. q-means: a quantum algorithm for unsupervised machine learning. In Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. M. et al.) 4136–4146 (Curran, 2019).

  • Saggio, V. Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021).

    Article 

    Google Scholar 

  • Skolik, A., Jerbi, S. & Dunjko, V. Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022).

    Article 

    Google Scholar 

  • Huang, H.-Y. et al. Quantum advantage in learning from experiments. Science 376, 1182–1186 (2022).

    Article 

    Google Scholar 

  • LaRose, R. & Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. A 102, 032420 (2020).

    Article 

    Google Scholar 

  • Caro, M. C. et al. Generalization in quantum machine learning from few training data. Nat. Commun. 13, 4919 (2022).

    Article 

    Google Scholar 

  • Caro, M. C. et al. Out-of-distribution generalization for learning quantum dynamics. Preprint at https://arxiv.org/abs/2204.10268 (2022).

  • Caro, M. C., Gil-Fuster, E., Meyer, J. J., Eisert, J. & Sweke, R. Encoding-dependent generalization bounds for parametrized quantum circuits. Quantum 5, 582 (2021).

    Article 

    Google Scholar 

  • Cerezo, M. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article 

    Google Scholar 

  • Wan, K. H., Dahlsten, O., Kristjánsson, H., Gardner, R. & Kim, M. S. Quantum generalisation of feedforward neural networks. npj Quantum Inf. 3, 36 (2017).

    Article 

    Google Scholar 

  • Beer, K. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020).

    Article 

    Google Scholar 

  • Schuld, M., Sinayskiy, I. & Petruccione, F. The quest for a quantum neural network. Quantum Inf. Process. 13, 2567–2586 (2014).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Dallaire-Demers, P.-L. & Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 98, 012324 (2018).

    Article 

    Google Scholar 

  • Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).

  • Killoran, N. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).

    Article 

    Google Scholar 

  • Bausch, J. Recurrent quantum neural networks. Adv. Neural. Inf. Process. Syst. 33, 1368–1379 (2020).

    Google Scholar 

  • Broughton, M. et al. TensorFlow Quantum: a software framework for quantum machine learning. Preprint at https://arxiv.org/abs/2003.02989 (2020).

  • Verdon, G., Marks, J., Nanda, S., Leichenauer, S. & Hidary, J. Quantum Hamiltonian-based models and the variational quantum thermalizer algorithm. Preprint at https://arxiv.org/abs/1910.02071 (2019).

  • Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    MATH 

    Google Scholar 

  • Kübler, J. M., Buchholz, S. & Schölkopf, B. The inductive bias of quantum kernels. Adv. Neural. Inf. Process. Syst. 34, 12661–12673 (2021).

    Google Scholar 

  • Kübler, J. M., Arrasmith, A., Cincio, L. & Coles, P. J. An adaptive optimizer for measurement-frugal variational algorithms. Quantum 4, 263 (2020).

    Article 

    Google Scholar 

  • Arrasmith, A., Cincio, L., Somma, R. D. & Coles, P. J. Operator sampling for shot-frugal optimization in variational algorithms. Preprint at https://arxiv.org/abs/2004.06252 (2020).

  • Gu, A., Lowe, A., Dub, P. A., Coles, P. J. & Arrasmith, A. Adaptive shot allocation for fast convergence in variational quantum algorithms. Preprint at https://arxiv.org/abs/2108.10434 (2021).

  • Sweke, R. Stochastic gradient descent for hybrid quantum–classical optimization. Quantum 4, 314 (2020).

    Article 

    Google Scholar 

  • Stokes, J., Izaac, J., Killoran, N. & Carleo, G. Quantum natural gradient. Quantum 4, 269 (2020).

    Article 

    Google Scholar 

  • Koczor, B. & Benjamin, S. C. Quantum natural gradient generalised to non-unitary circuits. Preprint at https://arxiv.org/abs/1912.08660 (2019).

  • Sharma, K. et al. Reformulation of the no-free-lunch theorem for entangled data sets. Phys. Rev. Lett. 128, 070501 (2022).

    Article 

    Google Scholar 

  • Abbas, A. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).

    Article 

    Google Scholar 

  • Rosenblatt, F. The Perceptron, a Perceiving and Recognizing Automaton (Project PARA) Report No. 85-460-1 (Cornell Aeronautical Laboratory, 1957).

  • Haykin, S. Neural Networks: a Comprehensive Foundation (Prentice Hall, 1994).

  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    MATH 
    Article 

    Google Scholar 

  • Hubregtsen, T. et al. Training quantum embedding kernels on near-term quantum computers. Preprint at https://arxiv.org/abs/2105.02276 (2021).

  • Thanasilp, S., Wang, S., Nghiem, N. A., Coles, P. J. & Cerezo, M. Subtleties in the trainability of quantum machine learning models. Preprint at https://arxiv.org/abs/2110.14753 (2021).

  • Huang, H.-Y. Quantum advantage in learning from experiments. Science 376, 1182–1186 (2022).

    Article 

    Google Scholar 

  • Cotler, J., Huang, H.-Y. & McClean, J. R. Revisiting dequantization and quantum advantage in learning tasks. Preprint at https://arxiv.org/abs/2112.00811 (2021).

  • Chen, S., Cotler, J., Huang, H.-Y. & Li, J. A hierarchy for replica quantum advantage. Preprint at https://arxiv.org/abs/2111.05874 (2021).

  • Chen, S., Cotler, J., Huang, H.-Y. & Li, J. Exponential separations between learning with and without quantum memory. In 2021 IEEE 62nd Annual Symp. on Foundations of Computer Science (FOCS) 574–585 (IEEE, 2022).

  • Perrier, E., Youssry, A. & Ferrie, C. QDataSet: quantum datasets for machine learning. Preprint at https://arxiv.org/abs/2108.06661 (2021).

  • Schatzki, L., Arrasmith, A., Coles, P. J. & Cerezo, M. Entangled datasets for quantum machine learning. Preprint at https://arxiv.org/abs/2109.03400 (2021).

  • Arrasmith, A., Holmes, Z., Cerezo, M. & Coles, P. J. Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Sci. Technol. 7, 045015 (2022).

    Article 

    Google Scholar 

  • Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Bilkis, M., Cerezo, M., Verdon, G., Coles, P. J. & Cincio, L. A semi-agnostic ansatz with variable structure for quantum machine learning. Preprint at https://arxiv.org/abs/2103.06712 (2021).

  • LaRose, R., Tikku, A., O’Neel-Judy, É., Cincio, L. & Coles, P. J. Variational quantum state diagonalization. npj Quantum Inf. 5, 57 (2019).

    Article 

    Google Scholar 

  • Kiani, B. T., Lloyd, S. & Maity, R. Learning unitaries by gradient descent. Preprint https://arxiv.org/abs/2001.11897 (2020).

  • Larocca, M., Ju, N., García-Martín, D., Coles, P. J. & Cerezo, M. Theory of overparametrization in quantum neural networks. Preprint at https://arxiv.org/abs/2109.11676 (2021).

  • McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).

    Article 

    Google Scholar 

  • Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1791 (2021).

    Article 

    Google Scholar 

  • Cerezo, M. & Coles, P. J. Higher order derivatives of quantum neural networks with barren plateaus. Quantum Sci. Technol. 6, 035006 (2021).

    Article 

    Google Scholar 

  • Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L. & Coles, P. J. Effect of barren plateaus on gradient-free optimization. Quantum 5, 558 (2021).

    Article 

    Google Scholar 

  • Holmes, Z., Sharma, K., Cerezo, M. & Coles, P. J. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313 (2022).

    Article 

    Google Scholar 

  • Pesah, A. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).

    Google Scholar 

  • Volkoff, T. & Coles, P. J. Large gradients via correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6, 025008 (2021).

    Article 

    Google Scholar 

  • Sharma, K., Cerezo, M., Cincio, L. & Coles, P. J. Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128, 180505 (2022).

    MathSciNet 
    Article 

    Google Scholar 

  • Holmes, Zoë Barren plateaus preclude learning scramblers. Phys. Rev. Lett. 126, 190501 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Marrero, C. O., Kieferova, M. & Wiebe, N. Entanglement induced barren plateaus. PRX Quantum 2, 040316 (2020).

    Article 

    Google Scholar 

  • Uvarov, A. V. & Biamonte, J. D. On barren plateaus and cost function locality in variational quantum algorithms. J. Phys. A 54, 245301 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Patti, T. L., Najafi, K., Gao, X. & Yelin, S. F. Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3, 033090 (2021).

    Article 

    Google Scholar 

  • Wang, S. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021).

    Article 

    Google Scholar 

  • Verdon, G. et al. Learning to learn with quantum neural networks via classical neural networks. Preprint at https://arxiv.org/abs/1907.05415 (2019).

  • Verdon, G. et al. Quantum graph neural networks. Preprint at https://arxiv.org/abs/1909.12264 (2019).

  • Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. Preprint at https://arxiv.org/abs/2104.13478 (2021).

  • Larocca, M. et al. Group-invariant quantum machine learning. Preprint at https://arxiv.org/abs/2205.02261 (2022).

  • Skolik, A., Cattelan, M., Yarkoni, S., Bäck, T. & Dunjko, V. Equivariant quantum circuits for learning on weighted graphs. Preprint at https://arxiv.org/abs/2205.06109 (2022).

  • Meyer, J. J. et al. Exploiting symmetry in variational quantum machine learning. Preprint at https://arxiv.org/abs/2205.06217 (2022).

  • Larocca, M. et al. Diagnosing barren plateaus with tools from quantum optimal control. Preprint at https://arxiv.org/abs/2105.14377 (2021).

  • Wang, S. et al. Can error mitigation improve trainability of noisy variational quantum algorithms? Preprint at https://arxiv.org/abs/2109.01051 (2021).

  • Deshpande, A. et al. Tight bounds on the convergence of noisy random circuits to the uniform distribution. Preprint at https://arxiv.org/abs/2112.00716 (2021).

  • Hakkaku, S., Tashima, Y., Mitarai, K., Mizukami, W. & Fujii, K. Quantifying fermionic nonlinearity of quantum circuits. Preprint at https://arxiv.org/abs/2111.14599 (2021).

  • Bultrini, D. et al. The battle of clean and dirty qubits in the era of partial error correction. Preprint at https://arxiv.org/abs/2205.13454 (2022).

  • Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • Czarnik, P., Arrasmith, A., Coles, P. J. & Cincio, L. Error mitigation with Clifford quantum-circuit data. Quantum 5, 592 (2021).

    Article 

    Google Scholar 

  • Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum–classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn 90, 032001 (2021).

    Article 

    Google Scholar 

  • Sharma, K., Khatri, S., Cerezo, M. & Coles, P. J. Noise resilience of variational quantum compiling. New J. Phys. 22, 043006 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • Cincio, L., Rudinger, K., Sarovar, M. & Coles, P. J. Machine learning of noise-resilient quantum circuits. PRX Quantum 2, 010324 (2021).

    Article 

    Google Scholar 

  • Ho, A., Verdon, G. & Mohseni, M. Quantum machine perception. US patent application 17,019,564 (2020).

  • Meyer, J. J., Borregaard, J. & Eisert, J. A variational toolbox for quantum multi-parameter estimation. NPJ Quantum Inf. 7, 89 (2021).

    Article 

    Google Scholar 

  • Beckey, J. L., Cerezo, M., Sone, A. & Coles, P. J. Variational quantum algorithm for estimating the quantum Fisher information. Phys. Rev. Res. 4, 013083 (2022).

    Article 

    Google Scholar 

  • Wang, J. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).

    Article 

    Google Scholar 

  • Layden, D. & Cappellaro, P. Spatial noise filtering through error correction for quantum sensing. npj Quantum Inf. 4, 30 (2018).

    Article 

    Google Scholar 

  • Johnson, P. D., Romero, J., Olson, J., Cao, Y. & Aspuru-Guzik, A. QVECTOR: an algorithm for device-tailored quantum error correction. Preprint at https://arxiv.org/abs/1711.02249 (2017).

  • Peruzzo, A. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun, 5, 4213 (2014).

    Article 

    Google Scholar 

  • McArdle, S. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5, 75 (2019).

    Article 

    Google Scholar 

  • Cirstoiu, C. Variational fast forwarding for quantum simulation beyond the coherence time. npj Quantum Inf. 6, 82 (2020).

    Article 

    Google Scholar 

  • Huang, H.-Y., Kueng, R. & Preskill, J. Information-theoretic bounds on quantum advantage in machine learning. Phys. Rev. Lett. 126, 190505 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Aharonov, D., Cotler, J. & Qi, X.-L. Quantum algorithmic measurement. Nat. Commun. 13, 887 (2022).

    Article 

    Google Scholar 

  • Chia, N.-H. et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In Proc. 52nd Annual ACM SIGACT Symposium on Theory of Computing 387–400 (Association for Computing Machinery, 2020).

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar 

  • Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably efficient machine learning for quantum many-body problems. Preprint at https://arxiv.org/abs/2106.12627 (2021).

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    MathSciNet 
    Article 

    Google Scholar 

  • Kohn, W. Nobel lecture: Electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999).

    Article 

    Google Scholar 

  • Alcazar, J., Leyton-Ortega, V. & Perdomo-Ortiz, A. Classical versus quantum models in machine learning: insights from a finance application. Mach. Learn. Sci. Technol. 1, 035003 (2020).

    Article 

    Google Scholar 

  • Bouland, A., van Dam, W., Joorati, H., Kerenidis, I. & Prakash, A. Prospects and challenges of quantum finance. Preprint at https://arxiv.org/abs/2011.06492 (2020).

  • Manning C. & Schutze, H. Foundations of Statistical Natural Language Processing (MIT Press, 1999).

  • Russ, J. C. The Image Processing Handbook (CRC Press, 2006).

  • Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996).

  • Bernstein, E. & Vazirani, U. Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Babbush, R. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article 

    Google Scholar 

  • Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article 

    Google Scholar 

  • Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015).

    Article 

    Google Scholar 

  • Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article 

    Google Scholar 

  • Sanchez-Lengeling, B. & Aspuru-Guzik, Alán Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article 

    Google Scholar 

  • [ad_2]


    Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *